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K.V.Kholshevnikov 

1939-2021 



Evolutionary Celestial Mechanics 

Analytical approaches 
(the main object of the study is 

the three-body problem) 

Numerical approaches 
(complexity of models is limited by 

performance of computers) 
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Formation of paradigms (e.g. recognition of the importance of the Lidov-Kozai effect) 

ECM: the study of the evolution of the motion of celestial bodies over long 
time intervals (significantly exceeding the typical value of the orbital period 

of the system under study) 
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Main model: three-body problem 

0 ( 1,2)im m i 

The situations studied by celestial 

mechanics are characterized by the 

presence of a dominant body! 

Studied since the XVIIth century! 

First results concerning resonant motions: 

Euler & Lagrange. 

Consequence of conservation  
of angular momentum 



Evolutionary celestial mechanics in recent decades 

1980s: chaos (Wisdom & Laskar), non-gravitational effects  

(e.g.. Yarkovsky effect) 

 

2000s: rapid increase in the number of known objects, transition 
from studies of the dynamics of individual objects to the 

dynamics of populations and analysis of dynamic structures, 
the emergence of new objects of study (exoplanetary systems) 
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Exoplanetary 
systems 

The first reliably discovered exoplanet :  1992 
At this moment (August 08, 2024):  5743 confirmed exoplanets in 4286 planetary systems;  
961 multiple planet systems;  
Nobel Prize in Physics for the discovery of the first exoplanet  around a Sun-like star: 2019 (M.Mayer, D.Quelez)  



Some remarks about studies of secular effects in dynamics of 
exoplanetary systems 

The usual model: the general three-body problem. 

Analysis of motions that were previously considered physically 
impossible (for example, planets in counter-rotation). 

Frequently realized resonant modes of motion. 
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Mean motion resonance (MMR) is the dynamical situation 

where the ratio of the orbital periods of two orbiting objects is 

close to  the ratio of two small integers 

 

Number of known first-order MMR in exoplanetary systems (taking 
from  Pichierri 2019) 



Time scales at the resonance (planar problem) 

T1 - orbital motions periods 

T2 -  timescale of rotations/oscillations of the resonant  

        argument  

T3 -  secular evolution of eccentricities  e  and longitudes of perihelion ω  

T1  <<  T2  <<  T3 

Strategy: 1. Averaging of the orbital motions, taking into account MMR; 
                  2. Analysis of the auxiliary 1DOF Hamiltonian  system describing  the 
                      variation of the resonant argument ; 
                  3. Averaging the right-hand sides of the equations for slow variables along 
                      the variations of the resonant argument 

How is the adiabatic approximation applied in MMP studies? 
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Adiabatic approximation 
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Adiabatic approximation 
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Neishtadt, A.I.: Jumps of the adiabatic invariant on crossing the separatrix and the origin of the 3:1 Kirkwood 

gap. Sov. Phys. Dokl. 32, 571–573 (1987) 



2. Adiabatic approximation: basic ideas 
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Neishtadt, A., Treschev, D.: 

Polymorphisms and adiabatic 

chaos. Ergodic Theory & 

Dynamical Systems. 31, 259-284 

(2011)  

Markov chains! 



Adiabatic approximation: Wisdom (1985) 
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Co-orbital motion 
D: co-orbital motion of two celestial bodies means their 1:1 MMR in orbiting a 

central body (Funk, Dvorak & Schwarz,2017) 

Co-orbital motion: exchange orbits 
(Laughlin & Chambers, 2002)  

A-exchange orbits E-exchange orbits 

Ex: Janus & Epimetheus Consequence of conservation  
of angular momentum 
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Co-orbital exoplanets 

Theoretical possibility: 

 
Laughlin & Chambers 2002, 

Beauge et al 2007, Cresswell & Nelson 2009 

Lack of identification 

 

 

Formation 

constraints? 

Constraints 

to detectability? 



Preliminary part: motion equations (1) 
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Preliminary part: motion equations (2) 
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canonical transformation with the valence c=2 
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Now l is the only fast variable. 
We can average over it! 



Resonant approximation (1) 

Scale  transformation 
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Fast variables 
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Resonant approximation (2) 
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2 2 2 2
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Angular momentum deficit  

Integrable  limit (e=0):  X  - 1DOF Hamiltonian system, 

                                                x, y - parameters  

1 20.3, 0.3, 60e e    1 20.6, 0.3, 60e e    1 20.9, 0.3, 60e e   

1 1 2 2 1 2( , , ), ( , , )e e e e    
- resonant phase values at which W tends to infinity 
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Averaging over the fast subsystem solutions on the level  X=x 
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First integral of double averaged system 

Now it is possible to draw phase portraits!  

2 2

2 1 1 2

1 2

1 2

2 2

2 1 1 2

1 2

1 1 2 2

1 1
, ,

1 1
, .

e eW W
e e

e e

e eW W

e e e e

 

 

 
 

 

  
  

 

  
 

 



Co-orbital motions (planar priblem) 
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1 20.3, 0.3, 60e e   

Quasi-Binary 

Opposition 

Trojans 1 Trojans 2 
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Resonant phase 
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Black trajectories: QB-orbits 

Blue trajectories: HS-orbits 

Red trajectories: leading T-orbits 

Green trajectories: trailing T-orbits  
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Secular  evolution of co-orbital motion 
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Secular  evolution of co-orbital motion 

1 2

1max 2max

0.5, 0.01

( 0.199)e e

    

 

Black trajectories: QB-orbits 

Blue trajectories: HS-orbits 

Red trajectories: leading T-orbits 

Green trajectories: trailing T-orbits  

0.51  0.55  0.58  0.61 

1.10  1.49  1.70 1.47 



Anti-Lagrangian solutions 
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Giuppone, C.A., Beauge, C., 

Michtchenko. T.A., Ferraz-Mello  

MNRAS (2010) 
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Conclusion 

Adiabatic  approximation  is  applicable for unrestricted three-
body problem!   

Thank you for your attention! 

Future work 

   Probabilities of transitions between different regimes; “adiabatic 

chaos” 

Open question 

Can the direct co-orbital motion be transformed into the retrograde in a 

planar problem (and vice versa)?(Yes for non-resonant motions) 


