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Evolutionary Celestial Mechanics

ECM: the study of the evolution of the motion of celestial bodies over long
time intervals (significantly exceeding the typical value of the orbital period
of the system under study)
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Analytical approaches Numerical approaches
(the main object of the study is (complexity of models is limited by
the three-body problem) performance of computers)

Formation of paradigms (e.g. recognition of the importance of the Lidov-Kozai effect)



Main model: three-body problem

m,>>m. (1=12)

The situations studied by celestial
mechanics are characterized by the
presence of a dominant body!

Studied since the XVIIth century!

First results concerning resonant motions:
Euler & Lagrange.




Evolutionary celestial mechanics in recent decades

1980s: chaos (Wisdom & Laskar), non-gravitational effects
(e.g.. Yarkovsky effect)

2000s: rapid increase in the number of known objects, transition
from studies of the dynamics of individual objects to the
dynamics of populations and analysis of dynamic structures,
the emergence of new objects of study (exoplanetary systems)



Exoplanetary

systems

The first reliably discovered exoplanet : 1992
At this moment (August 08, 2024): 5743 confirmed exoplanets in 4286 planetary systems;

961 multiple planet systems;
Nobel Prize in Physics for the discovery of the first exoplanet around a Sun-like star: 2019 (M.Mayer, D.Quelez)




Number of planet pairs
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Some remarks about studies of secular effects in dynamics of
exoplanetary systems

The usual model: the general three-body problem.

Analysis of motions that were previously considered physically
impossible (for example, planets in counter-rotation).

Frequently realized resonant modes of motion.
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Mean motion resonance (MMR) is the dynamical situation
where the ratio of the orbital periods of two orbiting objects is
close to the ratio of two small integers
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Number of known first-order MMR in exoplanetary systems (taking
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How is the adiabatic approximation applied in MMP studies?

Time scales at the resonance (planar problem)

T, - orbital motions periods

T, - timescale of rotations/oscillations of the resonant
argument
T, - secular evolution of eccentricities € and longitudes of perihelion ®

Tl << T2 << T3

Strategy: 1. Averaging of the orbital motions, taking into account MMR,;
2. Analysis of the auxiliary 1DOF Hamiltonian system describing the
variation of the resonant argument ;
3. Averaging the right-hand sides of the equations for slow variables along
the variations of the resonant argument



Adiabatic approximation

4. Integrable limit (e=0): X - 1DOF Hamiltonian system,
X, Y - parameters

If we are lucky: B If we are unlucky:
H
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Phase portrait topologically
equivalent to phase portrait of
mathematical pendulum
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Adiabatic approximation
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Neishtadt, A.l.: Jumps of the adiabatic invariant on crossing the separatrix and the origin of the 3:1 Kirkwood
gap. Sov. Phys. Dokl. 32, 571-573 (1987) 11



2. Adiabatic approximation: basic ideas

Geometric chaos
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chaos. Ergodic Theory &
Dynamical Systems. 31, 259-284

(2011)

Markov chains!
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Adiabatic approximation: Wisdom (1985)
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Co-orbital motion

D: co-orbital motion of two celestial bodies means their 1:1 MMR in orbiting a
central body (Funk, Dvorak & Schwarz,2017)

Co-orbital motion: exchange orbits
(Laughlin & Chambers, 2002)

— T~

A-exchange orbits E-exchange orbits

Ex: Janus & Epimetheus Consequence of conservation
of angular momentum
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Co-orbital exoplanets

Theoretical possibility:

Laughlin & Chambers 2002,
Beauge et al 2007, Cresswell & Nelson 2009

Lack of identification

Constraints
to detectability?

Formation
constraints?

Bulletin of the AAS * Vol. 54, Issue 5

TOI-178: a window into the
formation and evolution of

planetary systems
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ABSTRACT

Dt spite the existence of co-orhital bedies in the solar sysiem, and the prediction of the formaticn of co-omital planets by planctary
sysiom formation models, no coohital encplanets (also called trojans) huve been deiected thes far. Hem we stody the sgnasane of
co-orhital excplanets in transit sumveys when fwo plinel candidates in Lhe sysem orhit the star with similar periods. Ssch & pair of
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co-arbital configeratins can explein such pesiod similazity. This depeneracy can be sehved by considering the transil iming variatices
(TTV) cfeach planet. We s \ focus on Lhe thres planet candidate sysiem TOLITE: the fwo outer candidates af the system
huave similar orbital periods and were found o have an sngular ssparasion cloe 1o /3 dusing the TESS observasion of sctor 2. Based
am the announced orbits, the long-term stability of the sysem mquines the fwo close-period plancts ko be co-orbital. Dhar i
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in mos: detail, and show that despile the influence of an inner planet just cussids the 23 MME, (s potential co-crbital sysiem could
b stable cn 2 gigayear time-scale for a variety of planetary masses, either on a trojan or 2 horseshee orbil. We paedict that large TTVs
should arise in sach a configuration with a period of several hundmd days We then shw how the mass of each planet can he metrieved
from thess TV

Key Words. celestial mechanics — planets and saielfies: detection — plarets and s lies: dynamical evalulion and stailicy
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Preliminary part: motion equations (1)

L (1) =T(F)+V(r)
%(%fj_zfzo (=12 7)== {/z[ﬂl (L= p ) 0 + By (- ity ) ¥ | =24 By (1, )}
Mass of the star: 1—p. V(n):ﬂ{fﬁ(l—ﬂhﬁz(l—#)} 1B,
Masses of the planets:  wum, pi, (7 +1, =1) " " Ll
dp, __O0A dh O i1 9 p.=(eT/ow), Z(p;,r)=T(p;)-V(r)

dt or, ' dt op,

11
T(pi)={—(e 'L)2j+—(|ol+|o2 pl+pz)}
., . 2lu\m ) 1-p
Democratic” variables

(Morbidelli (2002), Laskar & Robutel (1995))

P =pi/u, #@.r)=7(p,r)— (B, n)+0()

(p;,1;) = (Pi, 1) ToPur) = HPut) + Hoa(Pute), Z(Puk) = 3= (1=12)
Hio T

Rescaling to eliminate singularity EE 1.
v o : 1M1 T M2
(Robutel et al (2016)) P =2 S(B.+PP,+P.)
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Preliminary part: motion equations (2)

b, 1) = (L.G, |, @)

s _ W _ 2
H = TETE W (L,L,,G,G, ., @, —a,) +O(17)

Resonance argument: p=4 -4, =, -, +@, - @,

(L.G, @)= (P,R,R,P,,pl @, ,)

canonical transformation with the valence c=2

| =1, o, =0,+w,, @,=0,—-0,

1 \ P,
L, =E[P| +(P,-P) ] L, ==

G, :%(pE + PA)+%(|:>¢ _P), G, :%(pz _ pA)_%(P(p P, P =2p,a Now | is the only fast var.lable.
We can average over it! 17




Resonant approximation (1)

Scale transformation

D = (P; —P)/ 2., ©=¢t

o=

Slow-fast system

de dod oW
i —Z _3p, —=-T=
Fast variables g g o0
dP, _, . OW do, _ 5, . W do, _ , __ oW
T #Faktz ow, dz okt oP, ' dzr #£akle P, ’

SF-Hamiltonian

D2
=

+W(R.,P,.p,@,)

Resonance (g+k):q

q=1k=0 = y=3

7 =3 +K)*"[m@+ k)™ + 59"

w=dD Andep + (2g1z,12,) *dy A dx
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Resonant approximation (2)
a.=1 P =m1-6 —mJ1-€5, P.=1+1-6 +m\J1-€ =1-c

Angular momentum deficit

Integrable limit (¢=0): E - 1DOF Hamiltonian system,
X, Y - parameters
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Averaging over the fast subsystem solutions on the level = =

A __552«/1—ef <aw> . _ 1—e§<aw>
1 ) 2 '

e 0w, e, o0w,
& = 8ﬁ2x/1—612 oW & = gﬁl 1_922 oW
' € 891 , ? e, aez .
oW 1 T (e .e,@,%) oW
— ) = —iI(e,,e,, , e, e, , d
<aé,> T(elyeZ’wAsf) 0 aé/( 1 2 wA ¢(T 1 2 ZD-A 5)) 4
é/ = el’eZ’ZD-A
3 T (ep.6,@4,8)
J(el’ez’wA’g) - 5 _ J- (DZ(T’el;ez,@'A,f)dT
27T

0

First integral of double averaged system

Now it is possible to draw phase portraits!




Co-orbital motions (planar priblem)

p=4-L=l-,+@, -m,

Resonant phase

W = izn[% - (Xl’xz)jdll

2w o\ |-,

Averaged disturbing function
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Secular evolution of co-orbital motion
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Black trajectories: QB-orbits
Blue trajectories: HS-orbits
Red trajectories: leading T-orbits

Green trajectories: trailing T-orbits 23



Anti-Lagrangian solutions
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Conclusion

Adiabatic approximation is applicable for unrestricted three-
body problem!

Future work

Probabilities of transitions between different regimes; “adiabatic
chaos”

Open guestion

Can the direct co-orbital motion be transformed into the retrograde in a
planar problem (and vice versa)?(Yes for non-resonant motions)

Thank you for your attention!
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